Search results for "Phthalocyanine derivatives"
showing 3 items of 3 documents
Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer
2020
Colorectal cancer is of particular concern due to its high mortality rate count. Recent investigations on targeted phototherapy involving novel photosensitizers and drug-delivery systems have provided promising results and realistic prospects for a successful medical treatment. New research trends have been focused particularly on development of advanced molecular systems offering effective photoactive species which could be selectively delivered directly into the affected cells. Porphyrins and phthalocyanines have been considered extremely attractive for this purpose due to their molecular versatility, excellent photochemical properties and multifunctional nature. In this review it has bee…
Electrical transduction in phthalocyanine-based gas sensors: from classical chemiresistors to new functional structures
2009
Phthalocyanines are organic-based materials which have attracted a lot of research in recent times. In the field of sensors, they present interesting and valuable potentialities as sensing elements for real gas sensor applications. In the present article, and taking some of our experiments as representative examples, we review the different ways of transduction applied to such applications. Some of the new tendencies and transducers for gas sensing based on phthalocyanine derivatives are also reported. Among them, electrical transduction (resistors, field-effect transistors, diodes, etc.) has been, historically, the most commonly exploited way for the detection and/or quantification of gas…
Efficacy and safety of photodynamic therapy with RLP068 for diabetic foot ulcers: a review of the literature and clinical experience
2020
This article is the second part of a literature review concerning diabetic foot ulcers (DFUs) and the use of antimicrobial photodynamic therapy (PDT). PDT involves the topical application of a photosensitiser into the tissue, followed by illumination that induces the formation of reactive oxygen species (ROS). PDT provides bacterial inactivation and promotes wound healing, and it can be used to manage the infection and microbial colonisation of DFUs. It has pivotal advantages in comparison with chemotherapeutics, such as no potential to induce resistance, and a wide spectrum of activity. Tetracationic Zn(II) phthalocyanine derivatives have been developed for PDT. Among these, we would like …